Sabtu, 25 Januari 2014

Cylinder block

Cylinder block

From Wikipedia, the free encyclopedia
A modern passenger car engine block, integrating the crankcase and all cylinders. The cylinder head bolts to the deck surface at top. Many ribs and bosses can be seen on the side of the casting. This block is for a straight-six engine.
A V6 diesel engine block, with both of the cylinder banks as well as the crankcase formed en bloc. The large holes are the cylinders, while the small ones are the mounting holes (round) and coolant or oil ducts (oval).
De Dion-Bouton engine with discrete crankcase but with monobloc integration of the cylinders and heads, circa 1905. A discrete crankcase with upper and lower halves (each its own casting) can clearly be seen, with the bottom half constituting both part of the main bearing support and also an oil sump.[1]
A cylinder block is an integrated structure comprising the cylinder(s) of a reciprocating engine and often some or all of their associated surrounding structures (coolant passages, intake and exhaust passages and ports, and crankcase). The term engine block is often used synonymously with "cylinder block" (although technically distinctions can be made between en bloc cylinders as a discrete unit versus engine block designs with yet more integration that comprise the crankcase as well).
In the basic terms of machine elements, the various main parts of an engine (such as cylinder(s), cylinder head(s), coolant passages, intake and exhaust passages, and crankcase) are conceptually distinct, and these concepts can all be instantiated as discrete pieces that are bolted together. Such construction was very widespread in the early decades of the commercialization of internal combustion engines (1880s to 1920s), and it is still sometimes used in certain applications where it remains advantageous (especially very large engines, but also some small engines). However, it is no longer the normal way of building most petrol engines and diesel engines, because for any given engine configuration, there are more efficient ways of designing for manufacture (and also for maintenance and repair). These generally involve integrating multiple machine elements into one discrete part, and doing the making (such as casting, stamping, and machining) for multiple elements in one setup with one machine coordinate system (of a machine tool or other piece of manufacturing machinery). This yields lower unit cost of production (and/or maintenance and repair).
Today most engines for cars, trucks, buses, tractors, and so on are built with fairly highly integrated design, so the words "monobloc" and "en bloc" are seldom used in describing them; such construction is often implicit. Thus "engine block", "cylinder block", or simply "block" are the terms likely to be heard in the garage or on the street.

Development context

The move from extensive use of discrete elements (via separate castings) to extensive integration of elements (such as in most modern engine blocks) was a gradual progression that passed through various phases of monobloc engine development, wherein certain elements were integrated while others remained discrete. This evolution has occurred throughout the history of reciprocating engines, with various instances of every conceptual variation coexisting here and there. The increase in prevalence of ever-more-integrated designs relied on the gradual development of foundry and machining practice for mass production. For example, a practical low-cost V8 engine was not feasible until Ford developed the techniques used to build the Ford flathead V8 engine, which soon also disseminated to the larger society. Today the foundry and machining processes for manufacturing engines are usually highly automated, with a few skilled workers to manage the making of thousands of parts.

Cylinders integrated into one or several cylinder blocks

Cylinders are cast in three pairs
Cylinders are cast in two blocks of three
DB 605 inverted aircraft engine of WW2, with monobloc cylinder blocks and heads
A cylinder block is a unit comprising several cylinders (including their cylinder walls, coolant passages, cylinder sleeves if any, and so forth). In the earliest decades of internal combustion engine development, monobloc cylinder construction was rare; cylinders were usually cast individually. Combining their castings into pairs or triples was an early win of monobloc design.
Each cylinder bank of a V engine (that is, each side of the V) typically comprised one or several cylinder blocks until the 1930s, when mass production methods were developed that allowed the modern form factor of having both banks plus the crankcase entirely integrated.
A wet liner cylinder block features cylinder walls that are entirely removable, which fit into the block by means of special gaskets. They are referred to as "wet liners" because their outer sides come in direct contact with the engine's coolant. In other words, the liner is the entire wall, rather than being merely a sleeve. Wet liner designs are popular with European manufacturers, most notably Renault and Peugeot, who continue to use them to the present. Dry liner designs use either the block's material or a discrete liner inserted into the block to form the backbone of the cylinder wall. Additional sleeves are inserted within, which remain "dry" on their outside, surrounded by the block's material. With either wet or dry liner designs, the liners (or sleeves) can be replaced, potentially allowing overhaul or rebuild without replacement of the block itself; but in reality, they are difficult to remove and install, and for many applications (such as most late-model cars and trucks), an engine will never undergo such a procedure in its working lifespan. It is likelier to be scrapped, with new equipment—engine or entire vehicle—replacing it. This is sometimes rightfully disparaged as a symptom of a throw-away society, but on the other hand, it is actually sometimes more cost-efficient and even environmentally protective to recycle machinery and build new instances with efficient manufacturing processes (and superior machine performance and emission control) than it is to overvalue old machinery and craft production.

Cylinder blocks and crankcase integrated

A flathead engine with integral cylinder bank and crankcase. The head is tipped upward to reveal the deck. This example is typical of engines of the 1930s through 1950s.
Casting technology at the dawn of the internal combustion engine could reliably cast either large castings, or castings with complex internal cores to allow for water jackets, but not both simultaneously. Most early engines, particularly those with more than four cylinders, had their cylinders cast as pairs or triplets of cylinders, then bolted to a single crankcase.
As casting techniques improved, an entire cylinder block of 4, 6, or 8 cylinders could be cast as one. This was a simpler construction, thus less expensive (unit-wise) to make. For straight engines, this meant that one engine block could now comprise all the cylinders plus the crankcase. Monobloc straight fours, uncommon when the Ford Model T was introduced with one in 1908, became common during the next decade, and monobloc straight sixes followed soon after. By the mid-1920s, both were common, and the straight sixes of General Motors (along with other features that differentiated GM's various makes and models from the Model T) were prying market share away from Ford. (These were all flathead designs.) During that decade, V engines retained a separate block casting for each cylinder bank, with both bolted onto a common crankcase (itself a separate casting). For economy, some engines were designed to use identical castings for each bank, left and right.[2] The complex ducting required for intake and exhaust was too complicated to allow the integration of the banks, except on a few rare engines, such as the Lancia 22½° narrow-angle V12 of 1919, that did manage to use a single block casting for both banks.[3] The hurdles of integrating the banks of the V for common, affordable cars were first overcome by the Ford Motor Company with its Ford flathead V-8, introduced in 1932, which was the first V-8 with a single engine block casting, putting an affordable V-8 into an affordable car for the first time.[4]
The communal water jacket of monobloc designs permitted closer spacing between cylinders. The monobloc design also improved the mechanical stiffness of the engine against bending and the increasingly important torsional twist, as cylinder numbers, engine lengths, and power ratings increased.
Most engines made today, except some unusual V or radial engines, are a monobloc of crankcase and all cylinders. In such cases, the skirts of the cylinder banks form a crankcase area of sorts, which is still often called a crankcase despite no longer being a discrete part.
Engine blocks are normally cast from either a suitable grade of iron or an aluminium alloy. The aluminium block is much lighter in weight, and has better heat transfer to the coolant, but iron blocks retain some advantages and continue to be used by some manufacturers. Because of the use of cylinder liners and bearing shells, the relative softness of aluminium is of no consequence.

Combined block, head, and crankcase

Light-duty consumer-grade Honda GC-family small engines use a monobloc design where the cylinder head, block, and half the crankcase share the same casting, termed 'uniblock' by Honda.[5] One reason for this, apart from cost, is to produce an overall lower engine height. Being an air-cooled OHC design, this is possible thanks to current aluminum casting techniques and lack of complex hollow spaces for liquid cooling. The valves are vertical, so as to permit assembly in this confined space. On the other hand, performing basic repairs becomes so time-consuming that the engine can be considered disposable. Commercial-duty Honda GX-family engines (and their many popular knock-offs) have a more conventional design of a single crankcase and cylinder casting, with a separate cylinder head.
Honda produces many other head-block-crankcase monoblocs under a variety of different names, such as the GXV-series. They may all be externally identified by a gasket which would bisect the crankshaft on an approximately 45° angle.
Exhaust valve failure is common and, owing to the monobloc design, so labour-intensive to repair that the engine is normally discarded.

Engine block, transmission case, and rear axle housing as frame members

Many farm tractor designs have incorporated their engine block, transmission case, and rear axle housing as frame members. Probably the first was the Fordson tractor, but many others followed. As with many other instances of integration of components into fewer castings, lower unit cost of production was the driver.
An engine block repair shop

See also

References

  1. Jump up ^ Kennedy, Rankin (1912 edition of 1905 book.). The De Dion-Bouton Engine and Cars. The Book of Modern Engines and Power Generators. London: Caxton. pp. 78–89.
  2. Jump up ^ Ludvigsen, V12 Engine, p. 120
  3. Jump up ^ Ludvigsen, V12 Engine, p. 50-53
  4. Jump up ^ Sorensen 1956, pp. 225–231.
  5. Jump up ^ "Honda General Purpose Engines: GC Series - Single Cylinder". Includes sectioned drawings


http://uangspot.com/?id=yusufsamarinda

Minggu, 22 Desember 2013

Cylinder Head (Kepala Silinder)

  Cylinder head


Cylinder Head ( Kepala Silinder )
Motor 4 Tak
·        Fungsi Kepala Silinder
·        Komponen-Komponen Kepala Silinder
·        Fungsi Komponen_komponen Kepala Silinder
·        Cara pembongkaran komponen kepala silinder
*                  Adapun fungsi Cylinder head/kepala silinder adalah sebagai berikut
a.      Sebagai sirip pendingin
b.      Sebagai dudukan komponen-komponen kepala silinder seperti
Valve, cam shaft, rocker arm,
c.       Sebagai tempat terjadinya ruang bakar
d.      Sebagai tempat dudukan busi
*                  Kemudian adapun fungsi dari komponen kepala silinder adalah sbb:
a.      Noken as ( cam shaft ) berfungsi sebagai menggerakkan rocker arem yang selanjutnya menggerakkan klep, noken di gerakkan berdasarkan putaran rantai kamrat
b.      Sepatu klep ( rocker arm ) berfungsi sebagai meneruskan gerakkan dari noken as untuk menggerakkan klep
c.       Rantai kamrat berfungsi sebagai menghubungkan putaran dari poros engkol menuju kepala silinder untuk menggerakkan kelengkapan klep
d.      Klep ( valve ), klep di bedakan menjadi dua yaitu
Klep in/isap berfungsi sebagai mengatur atau membuka tutup campuran udara yang masuk ke dalam ruang bakar
Klep ex/buang adalah berfungsi sebagai membuka tuutp saluran buang dari sisa-sisa pembakaran
e.      Seal klep berfungsi untuk menjaga agar oli tidak masuk ke dalam ruang bakar.
f.        Topi dan Kuku Pengunci Klep 
Berfungsi untuk menahan per klep agar tidak lepas dan dapat bekerja dengan baik.
g.      per klep 
Setelah klep terbuka akibat tekanan dari pelatuk klep, per klep akan mengembalikannya ke posisi semula sehingga menutup
h.      Bos Klep 
    Bos klep berfungsi sebagai jalur bergeraknya batang klep. Bila bos klep telah aus/longgar di bagian knalpot akan timbul asap putih tipis dan perbaikannya harus diganti dan pemasangannya di tukang bubut.
*      Pembongkaran komponen kepala silinder
Adapun prosedur pembongkaran kepala silinder adalah sebagai berikut
a.      Melepas tutup roda gigi spoket
b.      Melepas tutup inspeksi valve timing plug dan tutup kumparan pembangkit
c.       Memposisikan piston pada posisi top kompresi
d.      Kemudian melepas tensioner
e.      Melepas baut kepala silinder
f.        Melepas tutup penyetel katup
g.      Melepas poros rocker arm
h.      Melepas ring dan rocker arm
i.        Melepas poros nok
j.        Melepas katup
k.       Melepas pengarah katup.











Minggu, 20 Oktober 2013

Apa Artinya Piston

Piston

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Piston adalah sumbat geser yang terpasang di dalam sebuah silinder mesin pembakaran dalam silinder hidraulik, pneumatik, dan silinder pompa.
Tujuan piston dalam silinder adalah:
  • Mengubah volume dari isi silinder, perubahan volume bisa diakibatkan karena piston mendapat tekanan dari isi silinder atau sebaliknya piston menekan isi silinder. Piston yang menerima tekanan dari fluida dan akan mengubah tekanan tersebut menjadi gaya (linear).
  • Membuka-tutup jalur aliran.
  • Kombinasi dari hal di atas.
Dengan fungsi tersebut, maka piston harus terpasang dengan rapat dalam silinder. Satu atau beberapa ring (cincin) dipasang pada piston agar sangat rapat dengan silinder. Pada silinder dengan temperatur kerja menengah ke atas, bahan ring terbuat dari logam, disebut dengan ring piston (piston ring). Sedangkan pada silinder dengan temperatur kerja rendah, umumnya bahan ring terbuat dari karet, disebut dengan ring sil (seal ring).

Piston mesin

Piston dengan 2 ring kompresi dan 1 ring oli, waktu dikeluarkan dari silinder mesin
Piston pada mesin juga dikenal dengan istilah torak adalah bagian (parts) dari mesin pembakaran dalam yang berfungsi sebagai penekan udara masuk dan penerima tekanan hasil pembakaran pada ruang bakar. Piston terhubung ke poros engkol (crankshaft,) melalui setang piston (connecting rod). Material piston umumnya terbuat dari bahan yang ringan dan tahan tekanan, misal aluminium yang sudah dicampur bahan tertentu (aluminium alloy). Dikarenakan bahan tersebut maka piston memiliki muaian yang lebih besar dibandingkan dengan rumahnya (cylinder blok). Hal tersebut harus diantisipasi dengan clearence cylinder blok dan piston (selisih diameter piston dengan diameter cylinder blok). Clearance ini bervariasi untuk masing2 piston. Banyak salah pengertian diantara pada mekanik bahwa piston harus sesak atau pas dengan cylinder blok. Hal ini mengakibatkan seringnya terjadi macet (jammed) pada saat mesin panas (overheat). Seharusnya piston longgar terhadap cylinder blok. Banyak orang mengira bentuk dari piston adalah bulat. Sesungguhnya bentuk piston adalah oval dengan bagian terkecil terletak didaerah lubang pin piston. Bagian atas dari piston (tempat ring piston) selalu lebih kecil dari bagian bawah piston (bagian ekor). Pada saat dimasukan ke dalam cylinder blok (yang berbentuk bulat sempurna), bentuk oval dari piston ini akan mengakibatkan bagian yang lebih kecil terlihat lebih renggang.

Ring piston

Ring piston memiliki dua tipe, ring kompresi dan ring oli. Ring kompresi berfungsi untuk pemampatan volume dalam silinder serta menghapus oli pada dinding silinder. Kemampuan kompresi ring piston yang sudah menurun mengakibatkan performa mesin menurun. Ring oli berfungsi untuk menampung dan membawa oli serta melumasi parts dalam ruang silinder. Ring oli hanya ada pada mesin empat tak karena pelumasan mesin dua tak menggunakan oli samping.

Minggu, 08 September 2013

Apa itu Baut / Bolt?

Baut

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Berbagai bentuk dan ukuran baut
Baut atau sekrup adalah suatu batang atau tabung dengan alur heliks pada permukaannya. Penggunaan utamanya adalah sebagai pengikat (fastener) untuk menahan dua obyek bersama, dan sebagai pesawat sederhana untuk mengubah torsi (torque) menjadi gaya linear. Baut dapat juga didefinisikan sebagai bidang miring yang membungkus suatu batang.
Sebagian besar baut dipererat dengan memutarnya searah jarum jam, yang disebut ulir kanan. Baut dengan ulir kiri digunakan pada kasus tertentu, misalnya saat baut akan menjadi pelaku torsi berlawanan arah jarum jam. Pedal kiri dari sepeda memiliki ulir kiri

Sabtu, 24 Agustus 2013

TEORI DASAR ENGINE DIESEL

2.PatenDiesel berasal dari nama seorang insinyur dari Jerman yang menemukan mesin ini pada tahun 1893, yaitu Dr. Rudolf Diesel. Ia mendapatkan paten (RP 67207) berjudul 'Arbeitsverfahren und für Ausführungsart Verbrennungsmaschinen'. Pada waktu itu mesin tersebut tergantung pada panas yang dihasilkan ketika kompresi untuk menyalakan bahan bakar. Bahan bakar ini diteruskan ke silinder oleh tekanan udara pada akhir kompresi.
Pada tahun 1924, Robert Bosch, seorang insinyur dari Jerman, mencoba mengembangkan pompa injeksi daripada menggunakan metode tekanan udara yang akhirnya berhasil menyempurnakan ide dari Rudolf Diesel. Keberhasilan Robert Bosch dengan mesin dieselnya tersebut sampai saat ini digunakan oleh masyarakat.
1. Prinsip Kerja Mesin Diesel
Mesin/motor diesel (diesel engine) merupakan salah satu bentuk motor pembakaran dalam (internal combustion engine) di samping motor bensin dan turbin gas. Motor diesel disebut dengan motor penyalaan kompresi (compression ignition engine) karena penyalaan bahan bakarnya diakibatkan oleh suhu kompresi udara dalam ruang bakar. Dilain pihak motor bensin disebut motor penyalaan busi (spark ignition engine) karena penyalaan bahan bakar diakibatkan oleh percikan bunga api listrik dari busi.
Cara pembakaran dan pengatomisasian (atomizing) bahan bakar pada motor diesel tidak sama dengan motor bensin. Pada motor bensin campuran bahan bakar dan udara melelui karburator dimasukkan ke dalam silinder dan dibakar oleh nyala listrik dari busi. Pada motor diesel yang diisap oleh torak dan dimasukkan ke dalam ruang bakar hanya udara, yang selanjutnya udara tersebut dikompresikan sampai mencapai suhu dan tekanan yang tinggi. Beberapa saat sebelum torak mencapai titik mati atas (TMA) bahan bakar solar diinjeksikan ke dalam ruang bakar.      Dengan suhu dan tekanan udara dalam silinder yang cukup tinggi maka partikel-partikel bahan bakar akan menyala dengan sendirinya sehingga membentuk proses pembakaran. Agar bahan bakar solar dapat terbakar sendiri, maka diperlukan rasio kompresi 15-22 dan suhu udara kompresi kira-kira 600ºC.
Meskipun untuk motor diesel tidak diperlukan system pengapian seperti halnya pada motor bensin, namun dalam motor diesel diperlukan sistem injeksi bahan bakar yang  berupapompa injeksi (injection pump) dan pengabut (injector) serta perlengkapan bantu lain. Bahan bakar yang disemprotkan harus mempunyai sifat dapat terbakar sendiri (self ignition).
2. Perbedaan Utama Mesin Diesel Dan Mesin Bensin
Motor diesel dan motor bensin mempunyai beberapa perbedaan utama, bila ditinjau dari beberapa item di bawah ini, yaitu (lihat Tabel 1)
 1.Tabel_1
Motor diesel juga mempunyai keuntungan dibanding motor bensin, yaitu:
a.  Pemakaian bahan bakar lebih hemat, karena efisiensi panas lebih baik, biaya operasi lebih hemat karena solar lebih murah.
b.  Daya tahan lebih lama dan gangguan lebih sedikit, karena tidak menggunakan sistem pengapian
c.  Jenis bahan bakar yang digunakan lebih banyak
d.  Operasi lebih mudah dan cocok untuk kendaraan besar, karena variasi momen yang terjadi pada perubahan tingkat kecepatan lebih kecil.
Secara singkat prinsip kerja motor diesel 4 tak adalah sebagai berikut:
a. Langkah isap, yaitu waktu torak bergerak dari TMA ke TMB. Udara diisap melalui katup isap sedangkan katup buang tertutup.
b. Langkah kompresi, yaitu ketika torak bergerak dari TMB ke TMA dengan memampatkan udara yang diisap, karena kedua katup isap dan katup buang tertutup, sehingga tekanan dan suhu udara dalam silinder tersebut akan naik.
c. Langkah usaha, ketika katup isap dan katup buang masih tertutup, partikel bahan bakar yang disemprotkan oleh pengabut bercampur dengan udara bertekanan dan suhu tinggi, sehingga terjadilah pembakaran. Pada langkah ini torak mulai bergerak dari TMA ke TMB karena pembakaran berlangsung bertahap.
d. Langkah buang, ketika torak bergerak terus dari TMA ke TMB dengan katup isap tertutup dan katup buang terbuka, sehingga gas bekas pembakaran terdorong keluar.
3.Prinisp_Kerja_Motor_4_Tak

3. Proses pembakaran mesin diesel
Proses pembakaran dibagi menjadi 4 periode:
a)    Periode 1: Waktu pembakaran tertunda (ignition delay) (A -B) Pada periode ini disebut fase persiapan pembakaran, karena partikel-partikel bahan bakar yang diinjeksikan bercampur dengan udara di dalam silinder agar mudah terbakar.
b)    Periode 2: Perambatan api (B-C) Pada periode 2 ini campuran bahan bakar dan udara tersebut akan terbakar di beberapa tempat. Nyala api akan merambat dengan kecepatan tinggi sehingga seolah-olah campuran terbakar sekaligus, sehingga menyebabkan tekanan dalam silinder naik. Periode ini sering disebut periode ini sering disebut pembakaran letup.
c)    Periode 3: Pembakaran langsung (C-D) Akibat nyala api dalam silinder, maka bahan bakar yang diinjeksikan langsung terbakar. Pembakaran langsung ini dapat dikontrol dari jumlah bahan bakar yang diinjeksikan, sehingga periode ini sering disebut periode pembakaran dikontrol.
d)    Periode 4: Pembakaran lanjut (D-E) Injeksi berakhir di titik D, tetapi bahan bakar belum terbakar semua. Jadi walaupun injeksi telah berakhir, pembakaran masih tetap berlangsung. Bila pembakaran lanjut terlalu lama, temperatur gas buang akan tinggi menyebabkan efisiensi panas turun.

4.Pembakaran

Bentuk ruang bakar mesin diesel
Ruang bakar pada motor diesel lebih rumit disbanding ruang bakar motor bensin. Bentuk ruang bakar pada motor diesel sangat menentukan kemampuan mesin, sebab ruang bakar tersebut direncanakan dengan tujuan agar campuran bahan udara dan bahan bakar menjadi homogen dan mudah terbakar sekaligus.
Ruang bakar motor diesel digolongkan menjadi 2 tipe, yaitu:
a.    Tipe ruang bakar langsung (direct combustion chamber)
b.    Tipe ruang bakar tambahan (auxiliary combustion chamber)
Tipe ruang bakar tambahan terdapat 3 macam, yaitu:
1.    Ruang bakar kamar muka (precombustion chamber)
2.    Ruang bakar pusar (swirl chamber)
3.    Ruang bakar air cell (Air cell combustion chamber)
5.Ruang_Bakar_langsung

Ruang Bakar Langsung
Keuntungan ruang bakar langsung adalah: (1) efisiensi panas lebih tingi, pemakaian bahan bakar lebih hemat karena bentuk ruang bakar yang sederhana, (2) start dapat mudah dilakukan pada waktu mesin dingin tanpa menggunakan alat bantu start busi pijar (glow plug), dan (3) cocok untuk mesinmesin besar karena konstruksi kepala silinder sederhana.
Kerugian ruang bakar langsung adalah: (1) memerlukan kualitas bahan bakar yang baik, (2) memerlukan tekanan injeksi yang lebih tinggi, (3) sering terjadi gangguan nozzle, umur nozzle lebih pendek karena menggunakan nozzle lubang banyak (multiple hole nozzle), dan (4) dibandingkan dengan jenis ruang bakar tambahan, turbulensi lebih lemah, jadi sukar untuk kecepatan tinggi.
6.engine
7.engine

4. Komponen-komponen Mesin Diesel
Komponen-komponen mesin Diesel tidak berbeda jauh dengan komponen mesin bensin. Kumpulan dari komponen-komponen (elemen) tersebut membentuk satu kesatuan dan saling bekerja sama disebut dengan engine. Engine tersebut akan bekerja dan menghasilkan tenaga dari proses pembakaran kemudian mengubahnya menjadi energi gerak serta mengubah gerak lurus piston menjadi gerak putar. Engine merupakan bagian utama untuk penggerek dalam rangkaian kendaraan. Sebagian besar dari kendaraan menggunakan model pembakaran dalam (Combussion Engine). Pada model tersebut proses pembakaran terjadi didalam silinder. Pada siklus kerja pembakaran, setelah didapat udara untuk dimampatkan dalam silinder oleh piston, bahan bakar (solar) disemprotkan kedalam silinder dengan menggunakan Fuel Injector, maka terjadilah proses pembakaran dan ekspansi dari proses tersebut menghasilkan tenaga. Dalam rangkaian mesin terdapat beberapa komponen yang membentuk satu kesatuan untuk menghasilkan tenaga. Komponen-komponen tersebut adalah :
4.1. Crankcase dan Cyclinder Sleeve
Crankcase atau bak engkol ditempatkan dibawah bagian blok silinder. Pada bagian atasnya dibuat sedemikian rupa untuk tempat poros engkol (crankshaft) yang ditumpu oleh bantalan-bantalan. Crankcase dibuat dari cast iron dan dibentuk rigid dengan konsentrasi tegangan dan perubahan bentuk yang sangat kecil. Cyclinder sleeve adalah dinding silinder atau dinding tempat pembakaran yang mempunyai permukaan halus.
8.Crank_Case
4.2. Piston dan Ring Piston
Piston adalah komponen yang berfungsi untuk menerima tekanan atau ekspansi pembakaran kemudian diteruskan ke crankshaft melalui connecting rod. Komponen yang menghubungkan antara piston dengan connecting rod disebut piston pin. Untuk mencegah agar tidak terjadi kebocoran antara piston dengan dinding silinder dan masuknya minyak pelumas keruang bakar, maka pada bagian atas piston dipasang tiga buah ring piston yaitu dua ring untuk kompresi dan satu ring untuk pelumasan. Piston harus mempunyai sifat tahan terhadap tekanan tinggi dan dapat bekerja dalam kecepatan tinggi.
Pada mesin Colt Diesel ini, piston dibuat dari bahan alluminium alloys casting yang mempunyai sisi atau clereance antara piston dengan cyclinder sleeve. Piston pin yang digunakan adalah full floating, dimana tidak bebas bergerak terhadap piston pin, tetapi bebas bergerak terhadap conecting rod.
Piston ring berfungsi sebagai seal perapat untuk mencegah terjadinya kebocoran antara piston dengan dinding silinder dan mencegah masuknya minyak pelumas kedalam ruang bakar serta memindahkan sebagian besar panas piston ke dinding silinder.
Piston ring terbuat dari special cast iron dan diberi cut joint untuk memudahkan pemasangan kedalam alur yang terdapat pada piston. Untuk mesin Colt Diesel ini, permukaan setiap ring yang bergesekan adalah hard chrome plated, kecuali untuk yang kedua. Pada piston terdapat tiga ring yang terpasang, yaitu dua compression ring dan satu oil ring. Compression ring berfungsi untuk mencegah kebocoran gas selama langkah kompresi dan langkah kerja, sedangkan oil ring berfungsi untuk mengikis kelebihan minyak pelumas dari dinding silinder dan mencegahnya masuk kedalam ruang bakar.
9.Piston_Ring


Keterangan gambar 7 :
1. Piston
2. Oil Ring
3. 2 nd Compression Ring
4. 1 st Compression Ring
4.3.  Connecting Rod dan Connecting Rod Bearing
Connecting rod adalah bagian yang menghubungkan antara piston dengan crankshaft. Connecting rod ini secara berulang-ulang bekerja dengan penuh kekuatan menerima beban. Oleh karena itu connecting rod dibuat dari bahan baja spesial.
Connecting rod bearing terdiri dari dua jenis yaitu jenis bearing model sisipan (insert bearing) dan jenis bearing model tuangan. Pada umumnya bearing model sisipan banyak digunakan karena dapat dipasang dengan tepat dan dapat diganti apabila rusak.
10.Rod

Keterangan gambar 8 :
  1. Connecting Rod Bushing 5.   Upper Connecting Rod Bearing
  2. Connecting Rod 6.   Lower Connecting Rod Bearing
  3. Connecting Rod Cap A.  Tanda Untuk Meluruskan
  4. Connecting Rod Bolt B.   Mass Mark
4.4. Crankshaft
Crankshaft mempunyai tugas penting mengubah gerak lurus menjadi gerak putar. Pada Colt Diesel ini, crankshaft yang digunakan adalah highly rigid die forging integral dengan balance weight. Balance weight dipasang untuk menjamin keseimbangan perputarannya. Pada ujung depan crankshaft, terdapat crankshaft pulley dan crankshaft gear yang diikat dengan baut. Crankshaft pulley memutar alternator dan water pump melalui V-Belt.
Pada mesin Colt Diesel ini, bahan main bearing terbuat dari bahan paduan khusus kelmet, yaitu bahan yang terbuat dari steel backing dengan campuran tembaga dan timah sebagai lapisannya. Lapisan ini lebih keras dari logam putih dan lebih tahan terhadap panas. Upper main bearing mempunyai oil groove dan lubang oil yang segaris dengan lubang oil pada crankshaft.
11.Crank_Shaft
4.5. Flywheel
Flywheel merupakan piringan yang terbuat dari cast iron dan dibaut pada ujung crankshaft. Crankshaft hanya mendapatkan tenaga putaran dari langkah kerja saja. Agar crankshaft dapat bekerja pada langkah lainnya, crankshaft harus dapat menyimpan daya putaran yang diperolehnya. Bagian yang menyimpan tenaga putaran ini adalah flywheel. Pada sekeliling flywheel dipasang ring gear yang berhubungan dengan starter pinion.
12.Fly_Wheel
4.6. Mekanisme Katup
Bagian-bagian yang menggerakkan membuka dan menutup katup pada waktu yang teratur disebut mekanisme katup. Mekanisme katup dibagi dalam beberapa susunan katup yaitu jenis katup sisi (side valve) dan jenis katup kepala (overhead valve). Pada mesin Colt Diesel ini katup yang digunakan adalah jenis overhead valve.
Bagian-bagian yang terdapat dalam mekanisme katup antara lain adalah sebagai berikut :
  • Kepala Katup: Merupakan bagian katup yang mempunyai bentuk kerucut 45o atau  30o. Bila katup tertutup, katup akan menempel dengan rapat pada kedudukan katup. Kepala katup dibuat dalam berbagai bentuk untuk mengurangi tahanan hisap dan menyempurnakan pendinginan.
  • Batang Katup: Batang katup dibuat untuk bergerak didalam penghantar batang katup, karena itulah katup harus dapat bergerak dengan baik. Pada bagian bawah batang katup terdapat alur untuk tempat penahanan pegas.
  • Pegas Katup: Pegas katup adalah pegas spiral yang bekerja menutupkan katup. Kebanyakan mesin dilengkapi dengan satu pegas katup pada setiap katup, tetapi ada juga yang menggunakan dua buah pegas yang mempunyai tegangan yang berbeda. Apabila tegangan pegas lemah, kemungkinan gas akan keluar dari katup dan tenaga mesin menjadi berkurang.
  • Push Rod: Push rod merupakan bagian batang kecil yang menghubungkan rocker arm dan valve lifter, yang berfungsi memindahkan gerakan lifter ke ujung rocker arm.
  • Rocker Arm: Rocker arm merupakan bagian yang dipasangkan diatas kepala silinder dan didukung pada bagian tengahnya oleh poros rocker arm. Bila push rod mengangkat keatas (menekan) salah satu  rocker arm, maka akan menekan ujung batang katup dan menyebabkan katup terbuka.
13.Katup

5. SISTEM PELUMASAN
5.1.      Pelumasan pada Mesin Colt Diesel
Dalam kontruksi mesin banyak sekali terdapat bagian komponen yang bergerak, komponen tersebut seperti piston, coneccting rod, crank shaft, cam shaft, katup, dan masih banyak komponen-komponen lain. Pelumasan dimaksudkan untuk mengurangi gesekan langsung antara dua bagian (komponen) yang berhubungan.
Pada mesin Colt Diesel ini, minyak pelumas dipompakan oleh oil pump. Tipe oil pump yang digunakan adalah tipe gear. Selain sebagai bahan untuk pelumasan, minyak pelumas mempunyai fungsi-fungsi lain yaitu :
  • Mengurangi panas dengan cara mengambil panas dari komponen-komponen mesin yang dilaluinya dan mengusahakan gesekan sekecil mungkin.
  • Mengeluarkan (mengambil) kotoran-kotoran yang terdapat pada komponen-komponen mesin yang dilaluinya sehingga dapat mencegah proses korosi.

5.2. Komponen-komponen utama Sistem Pelumasan
5.2.1. Oil Pump
Oil pump menghisap oli dari crankcase dan menyalurkan keseluruh komponen mesin. Oil filter dipasangkan pada lubang  masuk pompa oli (oil pump inlet) untuk menyaring kotoran-kotoran. Pada Colt Diesel untuk engine 4D31 dan 4D34 oil pump digerakkan oleh camshaft skew gear. Sedangkan untuk engine 4D33 oil pump digerakkan oleh camshaft gear. Oil pump yang digunakan adalah model roda gigi. Pada model ini, terdapat dua buah roda gigi yang berkaitan. Bila salah satu roda gigi berputar, maka roda gigi lain akan ikut berputar berlawanan arah. Oleh karena itu, oli yang terdapat diantara celah-celah dua buah roda gigi didesak dari lubang masuk kelubang buang.
Oil pump jenis ini sangat sederhana tetapi dapat bekerja dengan baik. Oil pump digerakkan oleh putaran crankshaft melalui crankshaft gear yang putarannya berlawanan arah dengan putaran oil pump gear. Apabila tekanan oli meningkat menjadi lebih tinggi dari tekanan standar, oli akan dikembalikan ke oil pump oleh kerja relief valve. Hal ini dilakukan untuk mencegah kemacetan pada sistem pelumasan oleh karena tekanan yang berlebihan. Relief valve dipasang pada oil pump.
14.Oil_Pump
15.Oil_Pump
5.2.2. Oil Cooler
Oil cooler adalah alat yang digunakan untuk merubah panas antara coolant dan oli yang bertekanan. Oil cooler mempunyai sebuah bypass valve.
16.Oil_Cooler
17.Oil_Cooler
Bypass valve akan bekerja apabila kekentalan oli tinggi atau saat oil cooler element tersumbat. Hal tersebut akan menyebabkan tahanan aliran menjadi tinggi, sehingga bypass valve akan terbuka agar oli kembali secara langsung ke oil filter element tanpa melalui oil cooler.
18.Bypass_Valve
Regulator valve akan bekerja bila tekanan oli pada main oil gallery menjadi lebih tinggi dari nilai standar. Regulator valve akan membuka agar oli kembali ke oil pan. Dengan demikian tekanan oli akan kembali standar.
19.Regulator_Valve
5.2.3. Oil Filter
Dalam jangka waktu tertentu, oli akan kotor. Hal ini di sebabkan adanya partikel-partikel logam, kotoran dari udara, karbon serta bahan-bahan lain yang masuk ke dalam oli. Bagian-bagian berat akan mengendap, sedangkan bagian-bagian yang ringan akan ikut terbawa melumasi mesin yang akan memperbesar keausan dan kemungkinan panas yang berlebihan (over heating)
Pada oil pump cover terdapat sebuah relief valve yang berfungsi mengembalikan oli ke oil pan apabila tekanan melebihi nilai standar. Hal ini di lakukan untuk menghindari overload pada sistem pelumasan.
20.Oil_Filter

5.3. Beberapa Pelumasan pada Komponen-komponen Mesin
Komponen-komponen mesin yang saling berhubungan perlu dilumasi untuk memperkecil keausan serta menghindari korosi, sehingga umur pemakaian mesin akan lebih panjang dan menjadikan kinerja mesin lebih baik lagi.
5.3.1. Pelumasan pada Conecting Rod, Piston dan Main Bearing
Pada pelumasan ini, terdapat lubang oli yang menghubungkan main oil gallery ke setiap bearing. Oli mengalir masuk melalui lubang oli yang terdapat pada crankshaft untuk melumasi connecting rod bearing kemudian masuk melalui lubang yang terdapat pada connecting rod untuk melumasi connecting rod small end bushing. Oli disemprotkan dari oil jet yang terdapat pada connecting rod small end untuk melumasi piston.
21.Pelumasan
22.Pelumasan

5.3.2. Pelumasan pada Camshaft dan Mekanisme katup
Camshaft bushing dilumasi oleh oli yang mengalir melalui saluran main oil gallery ke setiap bushing. Pada bagian ujung depan camshaft journal terdapat lubang oli yang menyalurkan oli untuk melumasi camshaft gear dan mekanisme katup. Oli masuk ke rocker shaft braket bagian depan, kemudian masuk ke rocker shaft dan melumasi setiap rocker bushing. Pada saat yang sama, oli memancar dari lubang yang terdapat pada bagian atas rocker arm untuk melumasi permukaan atas dimana terdapat valve cam dan valve stem. Oli masuk ke lubang push rod pada cyclinder head dan crankshaft untuk melumasi cam sebelum kembali ke oil pan.
23.Pelumasan
24.Pelumasan

5.3.3. Pelumasan Timming Gear
Oli yang melewati main oil gallery mengalir melalui bagian dalam camshaft dan idler shaft, untuk melumasi setiap gear selama berputar. Pada bagian dalam timming gear case terdapat oil jet yang secara otomatis memberikan tekanan pelumasan secara konstan. Pada idler gear, shaft dilengkapi oil jet untuk pelumasan auto timmer.
Oil jet dipasang pada bagian bawah komponen main oil gallery pada setiap silinder dan mendinginkan piston dengan menyemprotkan oli kearah bagian dalam piston. Oil jet dipasang dengan check valve yang membuka dan menutup berdasarkan tekanan yang ditentukan. Check valve menutup pada putaran rendah, hal ini dilakukan untuk mencegah meningkatnya tekanan volume oli pada komponen sistem pelumasan.
25.Pelumasan